Derivation of Black-Scholes PDE

November 5, 2013

1 Goal:

To show that under the model

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d B_{t},
$$

the price $V\left(t, S_{t}\right)$ of a European-style derivative that pays $\phi\left(S_{t}\right)$ at time T satisfies

$$
\begin{aligned}
\frac{\partial}{\partial t} V(t, x)+\frac{\partial}{\partial x} V(t, x) r x+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V(t, x) \sigma^{2} x^{2}-r V & =0 \\
V(T, x) & =\phi(x) .
\end{aligned}
$$

2 Ingredients

1. Ito's formula
2. Game-theory portfolio: We hold Δ_{t} shares of stock at time t and 1 share of V. We choose Δ_{t} such that the return of the portfolio is "deterministic".
3. No arbitrage principle: If a portfolio π_{t} satisfies

$$
\begin{equation*}
d \pi_{t}=\mu(t) \pi_{t} d_{t}, \tag{2.1}
\end{equation*}
$$

then we must have $\mu(t)=r$, for all t.

3 Derivation of Black-Scholes PDE

1. Apply Ito's formula:

$$
d V_{t}=\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{\partial}{\partial x} V\left(t, S_{t}\right) d S_{t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2} d t .
$$

Since

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d B_{t}
$$

grouping the d_{t} and $d B_{t}$ terms together we have

$$
\begin{equation*}
d V_{t}=\left[\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{\partial}{\partial x} V\left(t, S_{t}\right) r S_{t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}\right] d t+\left[\frac{\partial}{\partial x} V\left(t, S_{t}\right) \sigma S_{t}\right] d B_{t} \tag{3.2}
\end{equation*}
$$

2.

a. The game-theory portfolio π satisfies: $\pi_{t}=\Delta_{t} S_{t}+V_{t}$. By self-financing requirement:

$$
\begin{aligned}
d \pi_{t} & =\Delta_{t} d S_{t}+d V_{t} \\
& =\Delta_{t}\left(r S_{t} d t+\sigma S_{t} d B_{t}\right)+d V_{t}
\end{aligned}
$$

Replace $d V_{t}$ by (3.2) and group $d_{t}, d B_{t}$ terms again we have

$$
\begin{aligned}
d \pi_{t}=\left[\Delta_{t} r S_{t}+\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{\partial}{\partial x} V(\right. & \left.\left.t, S_{t}\right) r S_{t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}\right] d t \\
& +\left[\Delta_{t} \sigma S_{t}+\frac{\partial}{\partial x} V\left(t, S_{t}\right) \sigma S_{t}\right] d B_{t}
\end{aligned}
$$

b. We choose $\Delta_{t}=-\frac{\partial}{\partial x} V\left(t, S_{t}\right)$ to "kill" the $d B_{t}$ term. Then

$$
\begin{equation*}
d \pi_{t}=\left[\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}\right] d t \tag{3.3}
\end{equation*}
$$

3. To apply the no arbitrage principle, we need to rewrite the right hand side of (3.3) in the form of (2.1). We have

$$
\begin{equation*}
d \pi_{t}=\frac{\left[\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}\right]}{\pi_{t}} \pi_{t} d_{t} \tag{3.4}
\end{equation*}
$$

This is in the form of (2.1) with

$$
\mu(t)=\frac{\left[\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}\right]}{\pi_{t}}
$$

Therefore, by the no arbitrage principle, we conclude that

$$
\frac{\left[\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}\right]}{\pi_{t}}=r
$$

But $\pi_{t}=\Delta_{t} S_{t}+V_{t}=-\frac{\partial}{\partial x} V\left(t, S_{t}\right) S_{t}+V_{t}$. So we have

$$
\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}=r\left(-\frac{\partial}{\partial x} V\left(t, S_{t}\right) S_{t}+V_{t}\right)
$$

In other words

$$
\frac{\partial}{\partial t} V\left(t, S_{t}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} V\left(t, S_{t}\right) \sigma^{2} S_{t}^{2}+r \frac{\partial}{\partial x} V\left(t, S_{t}\right) S_{t}-r V_{t}=0
$$

This is the Black-Scholes PDE.

